30 de nov de 2010

A História da Eletrônica

I - Introdução
Eletrônica é o campo da ciência e da engenharia que trata dos dispositivos eletrônicos e de sua utilização. É a parte da física que estuda e utiliza as variações de grandezas elétricas para captar, transmitir e processar informações. Trata dos circuitos elétricos e instrumentos constituídos por válvulas termiônicas, dispositivos semicondutores (tais como transistores, termitores e circuitos integrados), tubos de raios catódicos e outros componentes, entre os quais aqueles baseados no efeito fotoelétrico (células fotoelétricas, válvulas fotomultiplicadoras, etc..).


II - Origem
A origem dos aparelhos eletrônicos remonta às pesquisas de Thomas Alva Edison, que em 1883 descobriu o que chamamos hoje de "Efeito Edison", ou efeito termiônico. Ele demonstrou a formação de uma corrente elétrica fraca no vácuo parcial entre um filamento aquecido e uma placa metálica. A corrente era unidirecional e cessava se a polaridade do potencial entre o filamento e a chapa fosse invertida. Ficou comprovado que os transmissores da eletricidade estavam eletrizados. Mais tarde, estes transmissores receberam o nome de elétrons.
Em 1887, Heinrich Hertz, durante as suas experiências com arcos voltaicos, observou que a luz emitida durante a descarga de alta voltagem de um arco elétrico influía consideravelmente na descarga produzida por outro arco menor, colocado diante dele. No momento em que o menor deixava de receber a luz da descarga do maior, produzia-se uma faísca muito mais curta do que enquanto iluminado. Iniciou-se assim o estudo da Fotoeletricidade.
Em 1888, William Hallwachs demonstra que um eletroscópio com esfera de zinco perde sua carga negativa se a esfera for exposta à luz ultravioleta. O fenômeno tornou-se conhecido como "Efeito Hallwachs" e determinou serem negativas (elétrons) as cargas emitidas pela esfera de zinco sob a ação do ultravioleta.
Elster e Geitel, ambos físicos alemães, estudam o fenômeno e observam (1889) que os metais alcalinos sódio e potássio emitem elétrons também sob influência da luz comum. Trabalharam juntos pesquisando a ionização da atmosfera e o efeito fotelétrico. Descobriram em 1899 o fenômeno da descarga de um eletroscópio na proximidade de um radioelemento e enunciaram, em decorrência dessa observação, a Lei do Decrescimento Radioativo.

Construíram a primeira célula fotoelétrica de utilização prática (1905) de elementos alcalinos; criaram o primeiro fotômetro fotoelétrico e um transformador Tesla.

Em 1897, J.A. Fleming, físico inglês, faz a primeira aplicação prática do "Efeito Edison". É considerado um dos pioneiros da radiotelegrafia. Usa a propriedade unidirecional da corrente movida a elétrons para criar um detector de sinais telegráficos. A válvula de Fleming (foto 1) é a origem do tubo díodo (1904). Esse aparelho foi a origem de todas as válvulas utilizadas em telecomunicações. Criou também um ondímetro, um amperímeto térmico para correntes de alta freqûencia e um manipulador de indução variável . Deve-se a ele a regra, hoje clássica, dos "três dedos", que dá o sentido das forças eletromagnéticas. Essa regra é usada para a determinação do campo magnético, a partir do produto vetorial da carga e do campo elétrico.


Lee de Forest, inventor norte-americano, se lançou à promoção da radiocomunicação, organizando uma companhia telegráfica. Fracassou nessa primeira tentativa. Em 1906 inventa a lâmpada de três eletrólitos ou tríodo. Acrescenta um terceiro eletrólito (grade) à válvula de Fleming. A utilidade dessas válvulas como geradores, amplificadoras e detectoras, foi aos poucos impondo-se. Em 1910, transmitiu a voz do maior tenor de todos os tempos, Caruso. Mas só com a primeira Guerra Mundial sua invenção tornou-se amplamente utilizada e foi produzida em larga escala. Inventou também, o fonofilme, aparelho precursor na indústria do sistema falado.

Jonathan Zenneck, físico alemão, contribuiu para o desenvolvimento na radiotelefonia e das técnicas de alta frequência na Alemanha. Inventou o medidor de ondas elétricas (1899) e um processo para multiplicação das frequências (1900). Em 1905 desenvolve o Tubo de Braun e cria o osciloscópio catódico, origem dos cinescópios dos atuais aparelhos de televisão. Data de 1907 sua teoria da difusão das ondas elétricas. Depois da Segunda Guerra Mundial, construiu a primeira estação ionosférica alemã.

Edwin Howard Armstrong, engenheiro eletrônico norte-americano, tem como invenções no campo da radiotelefonia: o circuito regenerativo (1912), o circuito super-heteródino (1918) e o circuito super-regenerativo (1920). Desenvolveu um sistema radiofônico de frequência modulada, diminuindo as interferências nas transmissões e aumentando o nível de som.

A partir das invenções de Vladimir Zworykin, engenheiro e inventor russo, que se desenvolveu todo o sistema eletrônico da televisão moderna. É o primeiro a conseguir transformar uma imagem em uma corrente elétrica. Teve como importante trabalho a aplicação da eletrônica à medicina.

Inventor do iconoscópio, ponto de partida para o sistema de televisão, colaborou na elaboração de outros equipamentos eletrônicos, como o microscópio eletrônico.

Sir Robert Alexander Watson-Watt, físico escocês, concebeu um sisema de detecção de um objeto e de medida da distância por intermédio de ondas eletromágnéticas (1925). Dessa forma nasceu o RADAR (RAdio Detection And Ranging), cujas primeiras estações foram instaladas na Inglaterra.

Nos anos seguintes os aparelhos que produzem e detectam ondas eletromagnéticas - sobretudo curtas e ultra curtas - são desenvolvidos e as teorias de modulação aprofundadas. Em 1927 Carson empreende estudos matemáticos relativos ao transporte de um sinal por uma corrente elétrica portadora (modulação). A modulação de freqüência é prevista por Armstrong em 1928. A modulação de uma mesma onda portadora por várias comunicações telefônicas simultâneas permite o surgimento da técnica das comunicações múltiplas com um mesmo suporte material, colocando o telefone à disposição do grande público.

Blumldin e Schönberg desenvolvem em 1930 um sistema comercial para tratar a imagem elétrica produzida pelo tubo de Zworykin para permitir o transporte à distância e a reconstituição local.

Manfred Barthélemy, físico francês, é considerado um dos criadores da televisão na França. Dedicou-se primeiro à criação de aparelhos de medição, e depois à radiofonia. Durante a Primeira Guerra Mundial, construiu instrumentos emissores e participou da instalação do centro de comunicação na Torre Eiffel. Interessou-se em seguida pela televisão, aperfeiçoando o dispositivo do escocês John Baird, e foi encarregado de uma emissão regular de TV em 1935. Por ocasião da Segunda Guerra Mundial, realizou pesquisas sobre radares. Mais tarde, criou o isoscópio, um tubo aperfeiçoado para a TV.

Manfred e René elaboraram a transformação da imagem elétrica em imagem lumisosa. Câmaras, amplificadores, geradores de sinais de imagem, sinais de linha, sinais de sincronização, multiplicadores de frequência são desenvolvidos e produzidos.

Apesar do desenvolvimento de computadores digitais estar enraizado no ábaco e em outros instrumentos de cálculo anteriores, foi creditado a Charles Babbage o design do primeiro computador moderno. O primeiro computador totalmente automático foi o Mark I, ou Automatic Sequence Controlled Calculator, iniciado em 1939 na Universidade de Harvard, por Howard Aiken, enquanto o primeiro computador digital eletrônico, ENIAC (foto 2) - Electronic Numeral Integrator and Calculator - que usava centenas de válvulas eletrônicas, foi completado em 1946, na Universidade da Pensilvânia.


O UNIVAC (UNIversal Automatic Computer) se tornou em 1951 o primeiro computador a lidar com dados numéricos e alfabéticos com igual facilidade. Também foi o primeiro computador disponível comercialmente, usado no censo americano da década de 50.

Os computadores de primeira geração foram suplantados pelos transistorizados, entre o fim da década de 50 e início da década de 60. Esses computadores de segunda geração já eram capazes de fazer um milhão de operações por segundo. Por sua vez, foram suplantados pelos computadores de terceira geração, com circuitos integrados (foto 3), de meados dos anos 60 até a década de 70. A década de 80 foi caracterizada pelo desenvolvimento do microprocessador e pela evolução dos minicomputadores, microcomputadores e computadores pessoais, cada vez menores e mais poderosos.



Um circuito integrado consiste de muitos elementos, como transistores e resistores fabricados em uma mesma peça de silício ou outro material semicondutor . O pequeno microprocessador mostrado acima é o coração de um computador pessoal (PC). Ele contém muitos milhões de transistores, e pode executar até 100 Milhões de Instruções por Segundo. As filas de pinos (pernas) são usadas para conectar o microprocessador à placa de circuitos.


III - Etapas
III . 1 : Radar


Criado em 1935 por Watson-Watt. Designa um dispositivo eletrônico que permite ao homem detectar e localizar objetos à distância, e sob condições de luminosidade muito precárias para o olho humano.

O radar é largamente empregado em atividades tanto civis como militares. Suas aplicações mais comuns encontram-se na navegação aérea e marítima, para facilitar por exemplo o tráfico nos aeroportos e tornar mais simples as manobras dos navios . Os modernos aviões são equipados com radares, para que o piloto possa detectar obstáculos à sua trajetória com uma certa antecedência, realizando assim, as manobras necessárias com segurança.

Principais fins militares com que o radar é empregado:

· Detecção de aeronaves inimigas, antes que estas sobrevoem o território;
· Localização de submarinos;
· Incursões noturnas;
· Uso conjugado com outros dispositivos eletrônicos, para permitir que projéteis persigam alvos móveis;

O radar também é aplicado à radionavegação, permitindo aos aviões orientarem-se mesmo em condições de pouca ou nenhuma visibilidade. Também é usado na astronomia, especialmente no estudo da superfície dos planetas por satélites, e na meteorologia, para a previsão do tempos a curto prazo. A miniaturização dos circuitos permitiu a produção de unidades menores de radares, usadas no trânsito, pela polícia, para a detecção da velocidade dos automóveis, baseado no Efeito Doppler.

III . 2 - Tungstênio, Selênio e Germânio

A descoberta de certas propriedes elétricas em alguns metais (destacadamente o tungstênio, o selênio e o germânio), foi de grande importância no desenvolvimento da indústria eletrônica, na criação de numerosos componentes e na expansão de seus usos a muitos aparelhos novos, destinados a diversas atividades técnicas e científicas. Por suas qualidades de peso e dureza, e principalmente por seu elevado ponto de fusão (3.370 øC), o tungstênio é empregado na fabricação de filamentos para lâmpadas comuns e tubos de televisão. O selênio, por sua sensibilidade à luz e outras características, é utilizado nos fotômetros de aparelhos fotográficos, nas células fotoelétricas de portas automáticas, nos equipamentos preventivos de incêndios, etc. Já o germânio, tem largo emprego em vários dispositivos semicondutores. Dos três metais, o tungstênio é o que tem maior importância comercial.

III . 3 : Aplicações

Os aparelhos eletrônicos têm numerosas aplicações em nosso dia-a-dia. Eles integram os sistemas de Telecomunicações, Radiodifusão, Televisão, Radio-astronomia, Telecomando e Telemedidas, Eletromedicina, aparelhagem auxiliar de navegação marítima e aérea e sistemas de aplicações industriais, entre outros.

Os aparelhos eletrônicos são capazes de medir, controlar, comandar e regular diversas operações. Destacamos o microscópio eletrônico, os contadores e detetores de partículas, os aceleradores, radiotelescópios, o eletroencefalógrafo, o eletrodiógrafo, os computadores, etc.

Existem aparelhos eletrônicos para melhorar a audição e regular o batimento cardíaco (marcapassos). O rádio e o radar aumentaram a segurança dos transportes. Computadores eletrônicos, que realizam cálculos e operações das mais complexas e variadas com uma rapidez espantosa, são usados tanto por bancos, indústrias, repartições públicas, universidades ou em mesmo casa, no mundo inteiro. O estudo de harmônicos possibilitou o desenvolvimento de sistemas de comunicação mais modernos e eficientes.

III . 4 : Indústria Eletrônica

Mesmo depois da invenção do tríodo, os tubos eletrônicos demoraram a ser comercializados. Durante a Primeira Guerra Mundial até encontraram aplicação na radiocomunicação, mas a indústra eletrônica em si só foi surgir em 1922, com o advento das emissões radiofônicas. Entre 1922 e 1960, o total anual de vendas de equipamentos eletrônicos subiu de U$ 60 milhões para U$ 10,2 bilhões. Com os extraordinários progressos alcançados pelas atividades espaciais desenvolvidas principalmente na esfera estatal da economia das grandes potências, assim como pela expansão relativamente rápida das técnicas de automatização em todo o mundo, pode-se admititr que o valor dos produtos eletrônicos tem atingido, a partir da década de 70 somas muito elevadas, desempenhando um papel imortante na economia mundial.

Nos países mais industrializados da América Latina, como o Brasil, o México e a Argentina, a indústria eletrônica está dando os primeiros passos, restringindo-se à produção da chamada "eletrônica de lazer", que abrange televisores, rádio-receptores e aparelhos de som em geral. Em alguns casos porém, já vemos outros aparelhos e dispositivos de aplicação técnico-científica.

III . 5 : Circuitos Elétricos

São associações de componentes elétricos com a finalidade de transmitir controladamente a potência elétrica que lhes é aplicada. Os constituintes elementares do circuitos elétricos são chamados de componentes. São eles:

Resistores: são componentes que fornecem uma resistência pré-determinada. Eles são constituídos por um pequeno cilindro de cerâmica em torno do qual é colocada uma fina camada de carvão, grafite ou uma mistura de carvão e boro. Nas extremidades do cilindro são colocados terminais de fio de cobre estanhado e então o resitor é coberto de uma camada protetora de esmalte epecial.

Capacitores: são dispositivos capazes de armazenar energia elétrica sob forma estática. São constituídos por dois eletrodos condutores isolados por um dielétrico.

Transformadores: constam de dois ou mais indutores acoplados por um mesmo circuito magnético.

Geradores Elétricos: são dispositivos capazes de fornecer potência elétrica.

Linhas de Transmissão: são dispositivos destinados ao transporte de potência elétrica sob a forma de ondas eletromagnéticas.

Válvulas Eletrônicas: são dispositivos que consistem de dois ou mais eletrodos, mantidos em ambiente fechado, total ou parcialmente vacuofeito, entre os quais circulam correntes eletricamente controláveis pela excitação externa de um ou mais destes eletrodos. Foram quase que totalmente substituídas pelos transistores. Uma aplicação onde as válvulas predominam é em amplificadores para guitarras. E, ao contrário do que muita gente pensa, os guitarristas não preferem os amplificadores valvulados por terem estes uma resposta de freqüência mais extensa. Justamente o contrário! Os amplificadores valvulados para guitarras pouco tem a ver com os amplificadores valvulados para alta-fidelidade (hi-fi). Uma das razões da preferência dos guitarristas é que a distorção produzida pelas válvulas é mais suave (menos harmônicos ímpares). Alguns guitarristas chegam mesmo a usar apenas a distorção do amplificador, sem recorrer a distorcedores do tipo em pedal. Quanto às distorçoes ditas mais "pesadas" (ou seja, com maior ganho), os amplificadores valvulados também proporcionam melhores resultados, pois sua resposta limitada em altas freqüências (combinada com o uso habitual de alto-falantes de 12 polegadas - sem tweeters) atenua um pouco as freqüências mais altas, "limpando" (subjetivamente falando) o som.

Transistores: são dispositivos simplificados basedos no comportamento elétrico de semicondutores. Eles são responsáveis pela amplificação dos sinais nos circuitos. Substituem as válvulas, hoje em dia, na maioria das aplicações.

III . 6 - Televisão

Em 1817, o químico sueco Jakob Barzelius (1779-1848) descobriu um novo elemento, o selênio, que está na origem da história da origem da televisão. Em 1873, o inglês Willwghby Smith comprovou que o selênio tinha a propriedade de tranformar a energia luminosa em energia elétrica: ficava assim estabelecida a premissa teórica segundo a qual era possível transmitir imagens por meio da corrente elétrica.

Mas, somente em 1920 é que se realizaram verdadeiras transmissões de imagens, graças às experiências de dois grandes cientistas: John Logis Baird (1888-1946), no Reino Unido, e Charles F. Jenkins (1867-1934), nos EUA. Ambos utilizaram analisadores mecânicos, porém um não tinha conhecimento do trabalho do outro.

A Segunda Guerra Mundial veio atalhar o progresso da televisão. Mas, já em 1939 cinco países haviam adotado o sistema eletrônico. O pós-guerra assinalou um veloz desenvolvimento da TV

· TV a cores
Emprega-se na TV a cores, basicamente o princípio da tricomia na arte gráfica. com a decomposição da imagem a ser transmitida em três imagens secundárias, nas cores primárias azul, verde e vermelho. O sperfeiçoamento desse sistema acompanhou o progresso da televisão em preto e branco.
IV - Conclusão

Percebemos que no decorrer dos anos, a eletrônica assumiu grande importância em nossas vidas. Tudo que está ao nosso redor está envolvido de alguma forma com a eletrônica, que facilitou o nosso dia-a-dia. Os componentes eletrônicos foram realmente um marco nas descobertas e que nos proporcionaram um imenso avanço tecnológico e tornou mais simples nosso modo de viver.

(http://www.if.ufrj.br/teaching/eletronica/texto2.html)

2 comentários:

  1. Uma duvida poluidor.
    Já ouvi de engenheiros eletricistas que na tomada 2P+T(bipolar mais terra) não deve ser invertida a fase e neutro pois segundo eles "queimaria" o PC. Sempre achei que como o circuito tem diodos ou led's não faria diferença. No maximo quando o sistema eletronico precisasse acionar o aterramento, ao trocar o circuito do neutro para o terra(que estando trocado seria do fase para o terra) haveria corte de energia pois o fase iria desconectar. Isso não é necessariamente queimar.

    Como eletronica não é minha area gostaria de ouvir sua opinião.

    ResponderExcluir
  2. A proposito, lembre-se que estou falando apenas de Fase e Neutro. E que a corrente é alternada.

    Desde ja, grato.

    ResponderExcluir